Infrared Sensor

Operators manual

thermoMETER CS / CSmicro / CSmicro 2W CSmicro hs / CSmicro 2WM-2

CE-Conformity

The product complies with the following standards:

 EMC:
 EN 61326-1

 Safety Regulations:
 EN 61010-1:1993/ A2:1995

The product accomplishes the requirements of the EMC Directive 2004/108/EC .

Read the manual carefully before the initial start-up. The producer reserves the right to change the herein described specifications in case of technical advance of the product.

Warranty

All components of the device have been checked and tested for perfect function in the factory. In the unlikely event that errors should occur despite our thorough quality control, this should be reported immediately to MICRO-EPSILON. The warranty period lasts 12 months following the day of shipment. Defective parts, except wear parts, will be repaired or replaced free of charge within this period if you return the device free of cost to MICRO-EPSILON.

This warranty does not apply to damage resulting from abuse of the equipment and devices, from forceful handling or installation of the devices or from repair or modifications performed by third parties. No other claims, except as warranted, are accepted. The terms of the purchasing contract apply in full. MICRO-EPSILON will specifically not be responsible for eventual consequential damages.

MICRO-EPSILON always strives to supply the customers with the finest and most advanced equipment. Development and refinement is therefore performed continuously and the right to design changes without prior notice is accordingly reserved. For translations in other languages, the data and statements in the German language operation manual are to be taken as authoritative.

Content

1	Description Scope of Supply	7
1.1	Scope of Supply	7
1.2	Maintenance	7
1.3	Cautions	
1.4	Factory Default Settings	8
2	Technical Data	
2.1	General Specifications	9
2.2	Electrical Specifications	10
2.3	Measurement Specifications	12
2.4	Optical Charts	13
2.5	Close Focus Optics	17
3	Installation	20
3.1	Mechanical Installation	20
3.2	Mounting Accessories	23
3.3	Air Purge Collars	25
3.4	Further Accessories	27
3.5	Electrical Installation CS, CSmicro	
3.5.1	CSmicro-SF10 as Analog Device (mV output)	
3.5.2	CSmicro 2W-SF10/ 2WM-2/ SF15 as Analog Device (mA output)	
3.5.3	Digital Communication	
3.5.4	Analog + Digital (CSmicro 2W / 2WM-2/ and CSmicro hs)	
3.5.5	Open Collector Output (CSmicro only)	

3.5.6	Open Collector Output (CSmicro 2W-SF10/ 2WM-2/ hs)	
3.5.7	Direct Connection to an RS232 Interface on the Computer	
4	Software CompactConnect	
4.1	Installation	
4.2	System Requirements	34
4.3	Main Features	35
4.4	Communication Settings	
5	Command List CS, CSmicro-SF10	
6	Command List CSmicro 2W / CS micro 2WM-2 / CS micro hs	
7	Basics of Infrared Thermometry	40
8	Emissivity	41
8.1	Definition	41
8.2	Determination of Unknown Emissivities	
8.3	Characteristic Emissivities	
Appendix	A – Emissivity Table Metals	44
Appendix	B – Emissivity Table Metals	46

Description

1 Description

The sensors of the CS and CSmicro series are non-contact infrared temperature sensors.

They calculate the surface temperature based on the emitted infrared energy of objects [► Basics of Infrared Thermometry].

The sensor housing of the CS is made of stainless steel (IP 65/ NEMA-4 rating) and contains the complete sensor electronics. The sensor of the CSmicro is also made of stainless steel (IP 65/ NEMA-4 rating) – the sensor electronics is part of the connection cable in that case.

Both of the sensors have a fixed mounted connection cable.

The sensors CS/ CSmicro are sensitive optical systems. Please use only the thread for mechanical installation.

Avoid mechanical violence on the sensor - this may destroy the system (expiry of warranty).

1.1 Scope of Supply

• CS/ CSmicro incl. connection cable, mounting nut and operators manual

1.2 Maintenance

Lens cleaning: Blow off loose particles using clean compressed air. The lens surface can be cleaned with a soft, humid tissue moistened with water or a water based glass cleaner.

PLEASE NOTE: Never use cleaning compounds which contain solvents (neither for the lens nor for the housing).

Description

1.3 Cautions

Avoid static electricity, arc welders, and induction heaters. Keep away from very strong EMF (electromagnetic fields). Avoid abrupt changes of the ambient temperature.

In case of problems or questions which may arise when you use the CS/ CSmicro, please contact our service department. The customer service staff will support you with questions concerning the optimization of the work with the infrared thermometer, calibration procedures or with repairs.

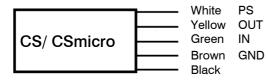
1.4 Factory Default Settings

	CS/CSmicro	CSmicro 2W	CSmicro 2WM-2	CSmicro hs	
Temperature range:	0350 °C	0…500 °C	3851600 °	-20…150 °C	
Output signal:	03.5 V	420 mA	420 mA	420 mA	
Emissivity:	0.950		1.000	0.950	
Transmission:	1.000				
Average time:	0.09 s				
Smart averaging:	active				
Ambient temperature source:	Sensor temperature				

The unit has the following presetting at time of delivery:

Read the manual carefully before the initial start-up. The producer reserves the right to change the herein described specifications in case of technical advance of the product.

2.1 General Specifications


	CS	CSmicro	CSmicro 2W	CSmicro 2WM-2	CSmicro hs	
Environmental rating	IP 65 (NEMA-4)					
Ambient temperature	-2075 °C	-20120 °C	-2085 °C	-20125 °C	-2075 °C	
Sensor	-2075 C		-2075 °C (ele	ektronics in cable)		
Storage temperature		-2085 °C				
Relative humidity		1095 %, non condensing				
Material	Stainless steel	Stainless steel	Stainless steel	Stainless steel	Stainless steel	
Sensor dimensions	M12x1, 85 mm long	ø14 mm x 28 mm	ø14 mm x 28 mm	ø14 mm x 28 mm	Ø29.5 mm x 55 mm	
Electronic dimensions		12 mm x 70 mm	12 mm x 45 mm	12 mm x 45 mm	12 mm x 45 mm	
Weight sensor 58 g 42 g			200 g			
Cable length	1 m (standard), 3 m, 8 m, 15 m	15 m (50 cm between sensor and electronics) (50 c		4 m (50 cm between sensor / electronics)		
Cable diameter	4.3 mm	2.8 mm (sensor and electronics)/ 4.3 mm (electronics and end of cable)				
Vibration	IEC 68-2-6: 3G, 11 – 200 Hz, any axis					
Shock IEC 68-2-27: 50G, 11 ms, any ax		iny axis				
EMC	2004/108/EG					

2.2 Electrical Specifications

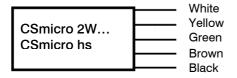
	CS	CSmicro	
Output [used pin]	only alterna	atively selectable	
Analog [OUT]	0-5 V^{1} or 0-10 V^{2} / scalable	0-5 V^{1} or 0-10 V^{2} / scalable	
Serial digital ³⁾ [OUT+IN]	uni- (burst mode) or bidirectional	uni- (burst mode) or bidirectional	
Alarm [OUT]	output voltage adjustable; N/O or N/C	output voltage adjustable; N/O or N/C	
Additional features	LED alarm indication/	Programmable open collector output	
	LED aiming support	24 VDC/ 50 mA [IN pin]	
Output impedance	min. 10 kΩ load impedance	min. 10 kΩ load impedance	
Input programmable functional input on green IN pin for:		N pin for:	
	 external emissivity adjustment [0 V ► ε=0.1 5 V ► ε=1.1] 		
	 ambient temperature compensation [0 V ► -20 °C 5 V ► 350 °C] 		
trigger (reset of hold functions) [5 V at IN pin resets the selected		V at IN pin resets the selected hold function]	
Current draw	9 mA (1228 VDC)/ 15 mA (5 VDC)	9 mA	
Power supply 57 VDC or 1230 VDC		530 VDC	

Tab. 2.1: Electrical specifications CS / CSmicro

- ¹⁾ 0...4.6 V at supply voltage 5 VDC; also valid for alarm output
- ²⁾ Only at supply voltage \geq 11 V
- ³⁾ Inverted RS232, TTL, 9.6 kBaud

Power supply

Analog output/ TxD (5 V)/ Alarm output


Analog input/ RxD (5 V)/ Open collector output (CSmicro only)

Ground (上) Shield

	CSmicro 2W / CSmicro 2WM-2 / CSmicro hs
Analog output	420 mA, scalable
Digital ¹ output	uni- (burst mode) or bidirectional
Alarm output	Programmable open collector output, 030 V; 500 mA
Output impedance	max. 1000 Ohm
Power supply	530 VDC / 420 mA

Tab. 2.2: Electrical specification CSmicro 2W, CSmicro 2WM-2, CSmicro hs

¹⁾ Inverted RS232 signal, TTL, 9.6 kBaud

Circuit impedance (+) TxD (5 V) RxD (5 V) / open collector output Circuit impedance (-), ground (⊥) Shield

2.3 **Measurement Specifications**

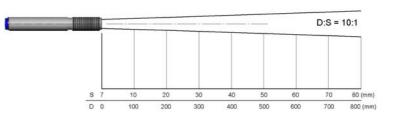
	CS / CSmicro	CSmicro 2W	CSmicro 2WM-2	CSmicro hs	
Temperature range IR (scalable via software)	-20350 °C	-30…+900 °C	+385…+1600 °C	-20+150 °C	
Spectral range		814 μm		1.6 µm	
Optical resolution	10:1	15:1	75:1	15:1	
CF-lens (optional)	1.2 mm@ 10 mm	0.8 mm@ 10 mm		0.8 mm@ 10 mm	
Accuracy ¹	±1.5 °C or ±1	.5 % of reading ²	±(0.3 % T _{Mess} + 2 °C) ³	\pm 1 °C oder \pm 1 of reading ⁴	
Repeatability 1	±0.75 °C or ±0	.75 % of reading ²	±(0.1 % T _{Mess} + 1 °C) ³	± 0.3 °C oder ± 0.3 % of reading 4	
Temperature resolution	0.2 °C	0.1 °C	0.1 °C	0.025 °C ^{4, 5}	
Response time (95 % signal/ adjustable via software)	30 ms2 s	150 ms	10 ms	150 ms	
Warm-up time		10 min			
Emissivity / Gain	0.1001.100 (adjustable via 0-5 VDC input or software)				
Transmissivity	0.1001.000 (adjustable via software)				
Interface (optional)	USB programming interface				
Signal processing	Average, Peak hold, Valley hold (adjustable via software)				
Software (optional)	CompactConnect				

 $^{1)}$ At ambient temperature 23±5 °C; whichever is greater, Epsilon = 1, time 1 s $^{2)}$ at object temperatures >0 °C

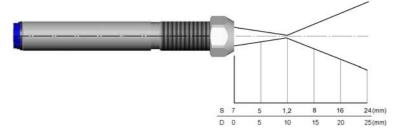
³⁾ at object temperatures >450 °C

⁴⁾ at object temperatures >20 °C

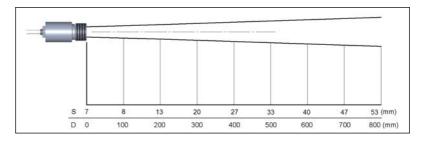
⁵⁾ at time constant >0.2 s

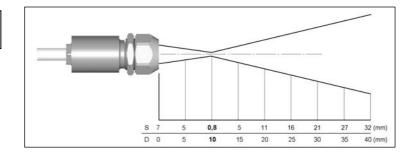

2.4 Optical Charts

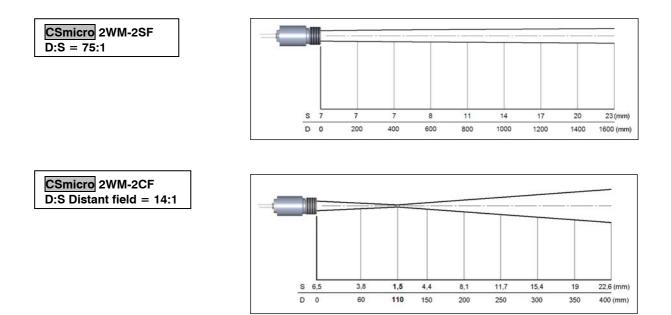
The following optical charts show the diameter of the measuring spot in dependence on the distance between measuring object and sensor. The spot size refers to 90 % of the radiation energy. The distance is always measured from the front edge of the sensor housing/ CF-lens holder/ air purge.


The size of the measuring object and the optical resolution of the infrared thermometer determine the maximum distance between sensor and measuring object.

In order to prevent measuring errors the object should fill out the field of view of the sensor completely. Consequently, the spot should at all times have at least the same size like the object or should be smaller than that.


CS / CSmicro
D:S = 10:1


CS / CSmicro with CF-lens CF: 1.2 mm @ 10 mm



CSmicro 2W / CSmicro hs	
D:S = 15:1	

CSmicro 2W / CSmicro hs with CF-lens CF: 0.8 mm @ 10 mm

2.5 Close Focus Optics

The optional CF-lens allows the measurement of small objects. The minimum spot size depends on the measuring head. In each case the measurement of distances is effected at the leading edge of the CF lens holder or laminar air purge collar. The assembling of the measuring head is effected by bolting the lens up to the stop. Please use the alternative M12x1 external thread for the combination model hs. The CF optics can also be combined with a laminar air purge:

Alternative overview:

- TM-CF-CS Close focus optics for mounting on sensor [CS/ CS micro-SF10/ CS micro 2W-SF10/ CS micro hs]
- TM-CFH-CS Close focus optics for mounting on sensor [CS micro 2WM-2]
- TM-CFAG-CS Close focus optics with external thread for mounting in solid housing [CS/ CS micro-SF10/ CS micro 2W-SF10/ CS micro hs]
- TM-CFHAG-CS Close focus optics with external thread for mounting in solid housing [CS micro 2WM-2]

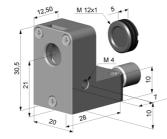


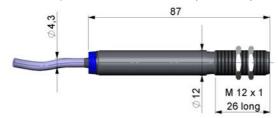
Fig. 2.1: CF-lens [TM-CF-CS] Protective window: [TM-PW-CS]

Fig. 2.2: Laminar air purge with integrated CF-lens [TM-APLCF-CS]

If the CF-lens is used, the transmission has to be set to **0.78** [CSmicro-SF10/ 2W / hs]. To change this value the optional USB-Kit (including CompactConnect software) is necessary.

A protective window is available for the protection of the measuring head lens. This window has the same mechanical dimensions as the CF lens and is offered in the following variants:

TM-PW-CS	Protective window for mounting on sensor [CS / CS micro-SF10/ CS micro 2W-SF10/ CS micro hs]
TM-PWH-CS	Protective window for mounting on sensor [CS micro 2WM-2]
TM-PWAG-CS	Close focus optics with external thread for mounting in solid housing
	[CS / CS micro-SF10/ CS micro 2W-SF10/CS micro hs]
TM-PWHAG-CS	Close focus optics with external thread for mounting in solid housing [CS micro 2WM-2]

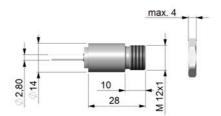

Fig. 2.3: Close focus optics with external thread [TM-CFAG-CS]; Protective window with external thread [TM-PWAG-CS]

The transmission has to be set to **0.83** [CS micro-SF10/ 2W/ hs] respectively **0.93** [2WM-2] by application of the protective window. To change this value the optional USB-Kit (including CompactConnect software) is necessary.

3 Installation

3.1 Mechanical Installation

The CS is equipped with a metric M12x1 thread and can be installed either directly via the sensor thread or with the help of the both hex nuts (standard) to the mounting bracket available.


Fig. 3.1: CS with a metric M12x1

The **LED aiming support** helps to adjust the unit to an object which has a temperature different to the background. For this reason it might be necessary to adjust the alarm value with the CompactConnect software. With the factory default setting (alarm value: $100 \,^{\circ}$ C) the LED (ring at the junction sensor housing – cable) will give blue light when the unit aims at a target with a temperature >100 $^{\circ}$ C.

The CSmicro is also equipped with a metric M12x1 thread and can be installed either directly via the sensor thread or with the help of the hex nut (standard) to the mounting bracket available.

The CSmicro hs is delivered with solid housing and can be installed about the M18x1-thread.

The CS-micro sensors are sensitive optical systems. The assembling may therefore only be effected using the present thread. Please avoid unnecessary force on the sensor as this could result in destruction. Furthermore, please note that in this case any warranty claim expires.

Fig. 3.2: CSmicro with a metric M12x1 thread

Various mounting accessories, fitting both CS and CSmicro, can be ordered additionally.

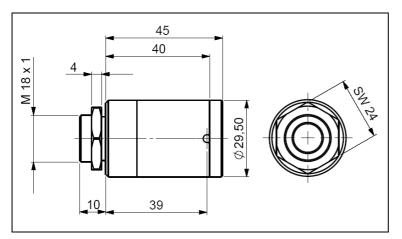
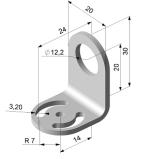
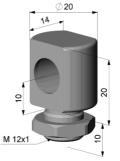
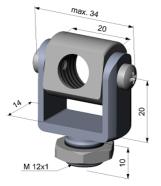


Fig. 3.3: CSmicro hs with a metric M18x1 thread (fitting mounting bracket TM-FBMH-CT)

3.2 Mounting Accessories

The Mounting bracket [TM-FB-CS], adjustable in one axis.


Fig. 3.4: Mounting bracket [TM-FB-CS]

The Mounting bold [TM-MB-CS] with M12x1 thread, adjustable in one axis.

Fig. 3.5: Mounting bold [TM-MB-CS]

The Mounting fork with M12x1 thread, adjustable in 2 axes [TM-MG-GS]

Mounting bracket, adjustable in two axes [TM-AB-CS] consisting of: TM-FB-CT and TM-MB-CT

Fig. 3.6: Mounting fork [TM-MG-CS]

Fig. 3.7: Mounting bracket [TM-AB-CS]

The Mounting fork can be combined with the **Mounting bracket [TM-FB-CS]** using the M12x1 thread.

3.3 Air Purge Collars

The lens must be kept clean at all times from dust, smoke, fumes and other contaminants in order to avoid reading errors. These effects can be reduced by using an air purge collar. Make sure to use oil-free, technically clean air, only.

Standard air purge collar; fits to the mounting bracket;

hose connection: 3x5 mm [TM-AP-CS]

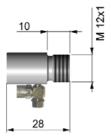


Fig. 3.8: Standard air purge collar [TM-AP-CS]

Laminar air purge collar – the side air outlet prevents a cooling down of the object in short distances;

hose connection: 3x5 mm [TM-APL-CS]

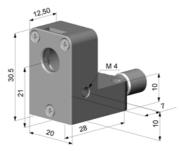


Fig. 3.9: Laminar air purge collar [TM-APL-CS]

A combination of the laminar air purge collar with the bottom section of the mounting fork allows an adjustment in two axes.

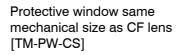


Fig. 3.10: Laminar air purge collar and mounting fork [TM-APL-CT + TM-MG-CS]

The needed amount of air (approx. 2...10 l/ min.) depends on the application and the installation conditions on-site.

3.4 Further Accessories

Right angle mirror Enables measurement with 90° angle [TM-RAM-CS]

USB-Kit: USB programming adaptor incl. terminal block and software CD [TM-USBK-CS]

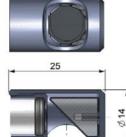
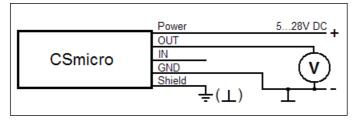


Fig. 3.3: Right angle mirror [TM-RAM-CS]

10

Fig. 3.4: Protective window [TM-PWH-CS]

Fig. 3.5: USB programming adaptor incl. terminal block and software CD [TM-USBK-CS]


If the protective window is used, the transmission has to be set, see Chap. 2.5. To change this value the optional USB-Kit (including CompactConnect software) is necessary.

► All accessories can be ordered using the according part numbers in brackets [].

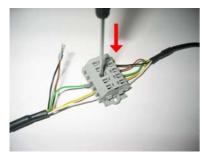
M 12x

3.5 Electrical Installation CS, CSmicro

3.5.1 CSmicro-SF10 as Analog Device (mV output)

Wire colors		
Power	White	
OUT	Yellow	
IN	Green	
GND	Brown	
Shield	Black	

The output impedance must be \geq 10 k Ω .


3.5.2 CSmicro 2W-SF10/ 2WM-2/ SF15 as Analog Device (mA output)

The maximum loop impedance is 1000 Ω .

3.5.3 Digital Communication

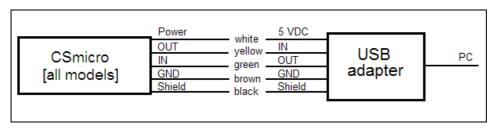
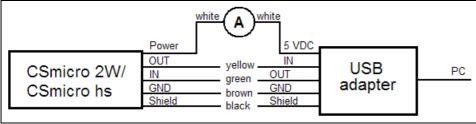
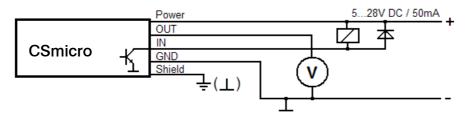

For a digital communication the optional USB programming kit is required. Please connect each wire of the USB adapter cable with the same coloured wire of the sensor cable by using the terminal block. Press with a screw driver as shown in the picture to loose a contact.

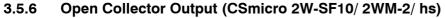
Fig. 3.14: Connect the USB cable with the sensor cable by using the terminal block

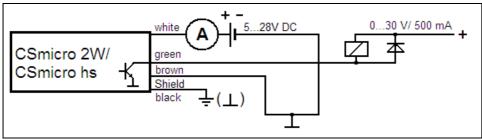
The sensor is offering two ways of digital communication:


- bidirectional communication (sending and receiving data)
- unidirectional communication (burst mode the sensor is sending data only)

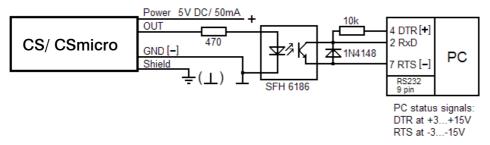

3.5.4 Analog + Digital (CSmicro 2W / 2WM-2/ and CSmicro hs)

The CSmicro 2W and CSmicro hs are able to work in the digital mode and simultaneously as analog device (4-20 mA).


In this case the sensor will be powered by the USB interface (5 V).



3.5.5 Open Collector Output (CSmicro only)



The open collector output is an additional alarm output on the CSmicro and can control an external relay. In addition the analog output can be used simultaneously.

3.5.7 Direct Connection to an RS232 Interface on the Computer

In the digital mode the sensor can be connected directly to a serial port (RS232) on your PC using this circuit. This connection supports only the **unidirectional** communication mode.

Software CompactConnect

4 Software CompactConnect

4.1 Installation

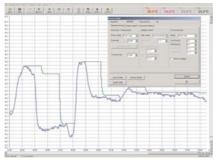
Insert the installation CD into the according drive on your computer. If the autorun option is activated the installation wizard will start automatically.

Otherwise please start setup.exe from the CD-ROM. Follow the instructions of the wizard until the installation is finished.

You will find a detailed software manual on the CD.

4.2 System Requirements

- Windows XP
- USB interface
- Hard disc with a least 30 MByte free space


The installation wizard will place a launch icon on the desktop and in the start menu: [Start]\Programs\CompactConnect.

If you want to uninstall the software from your system please use the uninstall icon in the start menu.

- At least 128 MByte RAM
- CD-ROM drive

Software CompactConnect

4.3 Main Features

- Graphic display for temperature trends and automatic data logging for analysis and documentation
- Complete sensor setup and remote controlling
- Adjustment of signal processing functions
- Programming of outputs and functional inputs

Software CompactConnect

4.4 Communication Settings

Serial interface

Baud rate:9600 baudData bits:8Parity:noStop bits:1Flow control:out

Protocol

All sensors of the CSmicro series are using a binary protocol. To get a fast communication the protocol has no additional overhead with CR, LR or ACK bytes.

To power the sensor the control signal "DTR" has to be set.

5 Command List CS, CSmicro-SF10

(also available on CD CompactConnect)

Read commands	Header bytes	Response	Conversion Response to Decimal value	Example
read process temperature ¹⁾	3E0200	word (hiByteLobyte)	process temp [°C] = (Hex \Rightarrow Dec(word)-1000)/10	[1]
read head temperature	3E0202	word (hiByteLobyte)	head temp [°C] = (Hex \Rightarrow Dec(word)-1000)/10	[.]
read current target temperature ¹⁾	3E0204	word (hiByteLobyte)	current temp [°C] = (Hex \Rightarrow Dec(word)-1000)/10	
read current ambient temperature	3E0206	word (hiByteLobyte)	ambient temp [°C] = (Hex \Rightarrow Dec(word)-1000)/10	
read current emissivity	3E0208	word (hiByteLobyte)	emissivity = Hex \Rightarrow Dec(word)/1000	[2]
Set commands	Header bytes	Set value	Generation of the set value	
set emissivity	3A0208	word (hiByteLobyte)	word = Dec \Rightarrow Hex (emissivity x 1000)	[3]
switch on loop maintenance mode	3D026190			[4]
set target temperature for maintenance	3A0212	word (hiByteLobyte)	word = Dec \Rightarrow Hex (target temperature [°C] x 10 +1000)	[5]
switch off loop maintenance mode	3D026180			[6]
		-		
Examples	Send	Receive	Comment	
 read process temperature 	3E0200	0519	process temp [°C] = (Hex \Rightarrow Dec(0519)-1000)/10 = 30,5	
[2] read current emissivity	3E0208	036C	emissivity = (Hex => Dec(036C)/1000) = 0,876	
[3] set emissivity to 0,95	3A0208 03B6		word = Dec \Rightarrow Hex(0,95 x 1000) = 03B6	
[4] switch on loop maintenance mode	3D026190			
[5] set analog output to 0°C (permanent)	3A021203E8		word = Dec ⇒ Hex (0 [°C] x 10 +1000) = 03E8	
[5] set analog output to 200°C (permanent)	3A0212 0BB8		word = Dec ⇒ Hex (200 [°C] x 10 +1000) = 0BB8	
[6] return to standard mode	3D026180			
¹⁾ if peak/ valley hold is activated the "proce	ess temperature"	holds the detected peak or	valley whereas the "current target temperature" shows the rea	l process
temperature (without post processing); in sta	indard mode "pr	ocess temperature" and "cu	rrent target temperature" are the same	
		•	- ·	
Burstmode (unidirectional)				
, , , , , , , , , , , , , , , , , , ,				
After switch on a continuous serial signal will	be created. The l	ourst string can be configure	ed with CompactConnect software.	
	Evenuele	Complete burst string	Conversion to Decimal value	
Burst string				
Burst string 2 synchronisation bytes: AAAA	Example	Complete burst string		

6 Command List CSmicro 2W / CS micro 2WM-2 / CS micro hs

Decimal	HEX	Binary/	Command	Data	Response	Result	Unit
		ASCI					
1	0x01	binary	Read object temperature	none	byte1 byte2	= (byte1 x 256 + byte2 - 1000) /10	°C
2	0x02	binary	Read sensor temperature	none	byte1 byte2	= (byte1 x 256 + byte2 - 1000) /10	°C
3	0x03	binary	Read current object temperature	none	byte1 byte2	= (byte1 x 256 + byte2 - 1000) /10	°C
4	0x04	binary	Read emissivity	none	byte1 byte2	= (byte1 x 256 + byte2 / 1000)	
5	0x05	binary	Read transmissivity	none	byte1 byte2	= (byte1 x 256 + byte2 / 1000)	
9	0x09	binary	Read process temperature	none	byte1 byte2	= byte1 x 256 + byte2 - 1000 /10	°C
14	0x0E	binary	Read serial number	none	byte1 byte2 byte3	= byte1 x 65536 + byte2 x 256 + byte3	
15	0x0F	binary	Read Filmware-Rev.	none	byte1 byte2	= byte1 x 256 + byte2	
129	0x81	binary	Set mA output	byte1	Byte1	byte1 = mA*10 (e.g. 4 mA = 4*10=40)	°C
130	0x82	binary	RESET of DAC mA output				
132	0x84	binary	Set emissivity	byte1	byte1 byte2	= (byte1 x 256 + byte2) /1000	
				byte2			
133	0x85	binary	Set transmissivity	byte1	byte1 byte2	= (byte1 x 256 + byte2) /1000	
				byte2			

(also available on CD CompactConnect)

Command List CSmicro 2W / CS micro 2WM-2 / CS micro hs

Temperature calculation at CSmicro hs: (byte1 x 256 + byte2 - 1000) / 100

Interface settings

8 Data bits, 1 Stop bit, No parity, No flow control

Examples

Reading the object temperature (all bytes in hex):

Transmit:	01	Command for reading the object temperature
Receive:	04D3	Object temperature in 0.1 degree Celsius + 1000
04D3 = dez. 1235		
1235 - 1000 = 235		
235 / 10 = 23.5 °C		

Reading the object temperature at CSmicro hs (all bytes in hex):

Transmit:	01	Command for reading the object temperature
Receive:	04D3	Object temperature in 0.1 degree Celsius + 10000
04D3 = dez. 12350		
1235 - 10000 = 2350		
2350 / 100 = 23.50 °C		

Setting the e	missivity	(all by	ytes in	hex):

Transmit:	84 03 B6	Command for setting the emissivity on 0.950
Receive:	03 B6	Emissionsgrad x 1000
03 B6 = dez. 950		
950 / 1000 = 0.950		

7 Basics of Infrared Thermometry

Depending on the temperature each object emits a certain amount of infrared radiation. A change in the temperature of the object is accompanied by a change in the intensity of the radiation. For the measurement of "thermal radiation" infrared thermometry uses a wave-length ranging between 1 μ and 20 μ m.

The intensity of the emitted radiation depends on the material. This material contingent constant is described with the help of the emissivity which is a known value for most materials (see enclosed table emissivity).

Infrared thermometers are optoelectronic sensors. They calculate the surface temperature on the basis of the emitted infrared radiation from an object. The most important feature of infrared thermometers is that they enable the user to measure objects contactless. Consequently, these products help to measure the temperature of inaccessible or moving objects without difficulties. Infrared thermometers basically consist of the following components:

- lens
- spectral filter
- detector
- electronics (amplifier/ linearization/ signal processing)

The specifications of the lens decisively determine the optical path of the infrared thermometer, which is characterized by the ratio Distance to Spot size.

The spectral filter selects the wavelength range, which is relevant for the temperature measurement. The detector in cooperation with the processing electronics transforms the emitted infrared radiation into electrical signals.

Emissivity

8 Emissivity

8.1 Definition

The intensity of infrared radiation, which is emitted by each body, depends on the temperature as well as on the radiation features of the surface material of the measuring object. The emissivity (Micro – Epsilon) is used as a material constant factor to describe the ability of the body to emit infrared energy. It can range between 0 and 100 %. A "blackbody" is the ideal radiation source with an emissivity of 1.0 whereas a mirror shows an emissivity of 0.1.

If the emissivity chosen is too high, the infrared thermometer may display a temperature value which is much lower than the real temperature – assuming the measuring object is warmer than its surroundings. A low emissivity (reflective surfaces) carries the risk of inaccurate measuring results by interfering infrared radiation emitted by background objects (flames, heating systems, chamottes). To minimize measuring errors in such cases, the handling should be performed very carefully and the unit should be protected against reflecting radiation sources.

Emissivity

8.2 Determination of Unknown Emissivities

- ► first, determine the actual temperature of the measuring object with a thermocouple or contact sensor. Second, measure the temperature with the infrared thermometer and modify the emissivity until the displayed result corresponds to the actual temperature.
- ▶ if you monitor temperatures of up to 380 °C you may place a special plastic sticker (emissivity dots part name: TM-ED-CS) onto the measuring object, which covers it completely. Now set the emissivity to 0.95 and take the temperature of the sticker. Afterwards, determine the temperature of the adjacent area on the measuring object and adjust the emissivity according to the value of the temperature of the sticker.
- cove a part of the surface of the measuring object with a black, flat paint with an emissivity of 0.98. Adjust the emissivity of your infrared thermometer to 0.98 and take the temperature of the colored surface. Afterwards, determine the temperature of a directly adjacent area and modify the emissivity until the measured value corresponds to the temperature of the colored surface.

CAUTION: On all three methods the object temperature must be different from ambient temperature.

Emissivity

8.3 Characteristic Emissivities

In case none of the methods mentioned above help to determine the emissivity you may use the emissivity tables (Appendix A and B). These are average values, only. The actual emissivity of a material depends on the following factors:

- temperature
- measuring angle
- geometry of the surface (plane, convex, concave)
- thickness of the material
- constitution of the surface (polished, oxidized, rough, sandblast)
- spectral range of the measurement
- transmissivity (for example with thin films)

Appendix A – Emissivity Table Metals

Material		typical Emissivity					
Spectral response		1.0 µm	1.6 μm	5.1 μm	8-14 μm		
Aluminium	non oxidized	0.1-0.2	0.02-0.2	0.02-0.2	0.02-0.1		
	polished	0.1-0.2	0.02-0.1	0.02-0.1	0.02-0.1		
	roughened	0.2-0.8	0.2-0.6	0.1-0.4	0.1-0.3		
	oxidized	0.4	0.4	0.2-0.4	0.2-0.4		
Brass	polished	0.35	0.01-0.05	0.01-0.05	0.01-0.05		
	roughened	0.65	0.4	0.3	0.3		
	oxidized	0.6	0.6	0.5	0.5		
Copper	polished	0.05	0.03	0.03	0.03		
	roughened	0.05-0.2	0.05-0.2	0.05-0.15	0.05-0.1		
	oxidized	0.2-0.8	0.2-0.9	0.5-0.8	0.4-0.8		
Chrome		0.4	0.4	0.03-0.3	0.02-0.2		
Gold		0.3	0.01-0.1	0.01-0.1	0.01-0.1		
Haynes	alloy	0.5-0.9	0.6-0.9	0.3-0.8	0.3-0.8		
Inconel	electro polished	0.25	0.25	0.15	0.15		
	sandblast	0.3-0.4	0.3-0.6	0.3-0.6	0.3-0.6		
	oxidized	0.4-0.9	0.6-0.9	0.6-0.9	0.7-0.95		
Iron	non oxidized	0.35	0.1-0.3	0.05-0.25	0.05-0.2		
	rusted		0.6-0.9	0.5-0.8	0.5-0.7		
	oxidized	0.7-0.9	0.5-0.9	0.6-0.9	0.5-0.9		
	forged, blunt	0.9	0.9	0.9	0.9		
	molten	0.35	0.4-0.6				
Iron, casted	non oxidized	0.35	0.3	0.25	0.2		
	oxidized	09	0.7-0.9	0.65-0.95	0.6-0.95		

Material Spectral response		typical Emissivity				
		1.0 <i>µ</i> m	1.6 <i>µ</i> m	5.1 <i>µ</i> m	8-14 μm	
Lead	polished	0.35	0.05-0.2	0.05-0.2	0.05-0.1	
	roughened	0.65	0.6	0.4	0.4	
	oxidized		0.3-0.7	0.2-0.7	0.2-0.6	
Magnesium		0.3-0.8	.05-0.3	0.03-0.15	0.02-0.1	
Mercury			0.05-0.15	0.05-0.15	0.05-0.15	
Molybdenum	non oxidized	0.25-0.35	0.1-0.3	0.1-0.15	0.1	
	oxidized	0.5-0.9	0.4-0.9	0.3-0.7	0.2-0.6	
Monel (Ni-Cu)		0.3	0.2-0.6	0.1-0.5	0.1-0.14	
Nickel	electrolytic	0.2-0.4	0.1-0.3	0.1-0.15	0.05-0.15	
	oxidized	0.8-0.9	0.4-0.7	0.3-0.6	0.2-0.5	
Platinum	black		0.95	0.9	0.9	
Silver		0.04	0.02	0.02	0.02	
Steel	polished plate	0.35	0.25	0.1	0.1	
	rustless	0.35	0.2-0.9	0.15-0.8	0.1-0.8	
	heavy plate			0.5-0.7	0.4-0.6	
	cold-rolled	0.8-0.9	0.8-0.9	0.8-0.9	0.7-0.9	
	oxidized	0.8-0.9	0.8-0.9	0.7-0.9	0.7-0.9	
Tin	non oxidized	0.25	0.1-0.3	0.05	0.05	
Titanium	polished	0.5-0.75	0.3-0.5	0.1-0.3	0.05-0.2	
	oxidized		0.6-0.8	0.5-0.7	0.5-0.6	
Wolfram	polished	0.35-0.4	0.1-0.3	0.05-0.25	0.03-0.1	
Zinc	polished	0.5	0.05	0.03	0.02	
	oxidized	0.6	0.15	0.1	0.1	

Appendix B – Emissivity Table Metals

Ν	laterial	typical Emissivity					
Spectral response		1.0 <i>µ</i> m	2.2 μm	5.1 <i>µ</i> m	8-14 μm		
Asbestos		0.9	0.8	0.9	0.95		
Asphalt				0.95	0.95		
Basalt				0.7	0.7		
Carbon	non oxidized graphite		0.8-0.9 0.8-0.9	0.8-0.9 0.7-0.9	0.8-0.9 0.7-0.8		
Carborundum			0.95	0.9	0.9		
Ceramic		0.4	0.8-0.95	0.8-0.95	0.95		
Concrete		0.65	0.9	0.9	0.95		
Glass	plate melt		0.2 0.4-0.9	0.98 0.9	0.85		
Grit				0.95	0.95		
Gypsum				0.4-0.97	0.8-0.95		
Ice					0.98		
Limestone				0.4-0.98	0.98		
Paint	non alkaline				0.9-0.95		
Paper	any color			0.95	0.95		
Plastic >50 μ m	non transparent			0.95	0.95		
Rubber				0.9	0.95		
Sand				0.9	0.9		
Snow					0.9		
Soil					0.9-0.98		
Textiles				0.95	0.95		
Water					0.93		
Wood	natural			0.9-0.95	0.9-0.95		

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15 · 94496 Ortenburg / Deutschland Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90 info@micro-epsilon.de · www.micro-epsilon.de X9751203-A021030MSC

