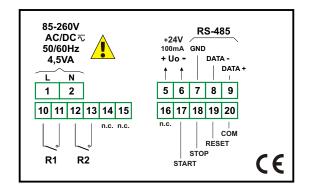
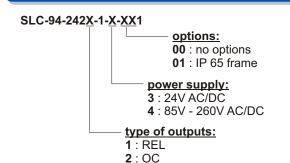
simex

SIMPACT


SLC-94

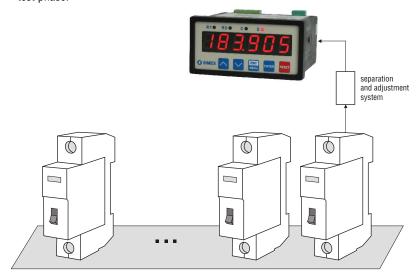
- timer
- START/STOP pulse inputs
- counter reset input
- 2 relay / OC outputs
- RS-485 / Modbus RTU


SLC-94 is designed for precision time (period) measurements, e.g. duration of time interval and mesurements of machine's operating time. Signals from push-buttons or contactors of control devices are connected to the terminals placed on back side of the counter. Properly programmed counter allows to measure time period between {START} and {STOP} signals. Other configuration allows to measure the activity time of {START} signal. In addition the measure can be started, stopped and cleared using local keyboard (on front of the device) or via RS-485 interface. Apart from basic function of time counting, totalizer is also available. Both counters are triggered and stopped imultaneously. Time counting is realised in range 0 ms to 999 99.9 hours. Build in two relay outputs allow use of this counter for control in many time depend processes.

- 2 counter reset sources: manual or electronic,
- keypad operation option,
- wide range of precision and presentation formats of timer and totalizer,
- password protection,
- versions available with AC and DC power supply.

Examplary pin assignment

Ordering



CE

Typical applications

 Measuring the activation time of residual current circuits breakers (RCCB) in the test phase.

Technical data

Power supply: 19V ÷ 50V DC; 16V ÷ 35V AC or 85 ÷ 260V AC/DC, all separated **Power consumption**: for 85 ÷ 260V AC/DC and 16V ÷ 35V AC power supply:

max. 4,5 VA; $19V \div 50V$ DC power supply: max. 4,5 W **Display**: LED, 6×13 mm high, red (green - on request)

Displayed values range: depending on the display format (max. 0 ms ÷ 999 99.9 h)

Inputs: pulse, galvanically isolated
START input - start count
STOP input - stop count
RESET input - counter reset
COM input - common

Input levels: low 0 V ÷ 1 V; high 10 V ÷ 30 V

Resolution: 1 ms

Inputs sampling frequency: > 10 kHz

Minimum time between input signals edges: $500~\mu s$ Accuracy: $\pm~0.005~\%$ of displayed value (at +25°C) Temperature stability: $\pm~0.005~\%$ (at $0^{\circ}C \div +50^{\circ}C$)

 $\textbf{Outputs}: 2 \text{ relays } 1\text{A}/250\text{V AC } (\text{cos}\phi\text{=}1) \text{ or the OC } 30\text{mA}/30\text{VDC}/100\text{mW}$

Transducer power supply output: 24V DC +5%, -10% / max. 100 mA, stabilized, not

insulated from communication interface

Communication interface: RS-485, 8N1 and 8N2, 1200 bit/s ÷ 115200 bit/s, Modbus

RTU (not galvanically insulated)

Data memory: non-volatile memory, EEPROM type

Operating temperature: $0^{\circ}\text{C} \div +50^{\circ}\text{C}$ Storage temperature: $-10^{\circ}\text{C} \div +70^{\circ}\text{C}$

Protection class: IP 65 (front), available additional frame IP 65 for panel cut-out sealing;

IP 20 (case and connection clips)

Case: board

Case material: NORYL - GFN2S E1 Case dimensions: 96 x 48 x 100 mm Panel cut-out dimensions: 90,5 x 43 mm Installation depth: min. 102 mm Board thickness: max. 5 mm